提 到z*是什么集合_z是什么集合大家在熟悉不过了,那你是否知道z*是什么集合_z是什么集合吗?快和小编一起去了解一下吧!
(资料图)
1、Z代表的是全体整数组成的集合,称为整数集。
2、整数集包括全体正整数、全体负整数和零。
3、用Z表示整数集的惯例是为了纪念整数集的创始人,1920年,一位叫诺特的德国女数学家引入“左模”,“右模”的概念。
4、她写出的《整环的理想理论》是交换代数发展的里程碑。
5、其中,诺特在引入整数环概念的时候,因为她的母语——德语中的整数叫做Zahlen,于是她将整数环记作Z,从那时起整数集就用Z 表示。
6、扩展资料数学中一些常用的数集及其记法:所有正整数组成的集合称为正整数集,记作N*,Z+或N+;所有负整数组成的集合称为负整数集,记作Z-;全体非负整数组成的集合称为非负整数集(或自然数集),记作N;全体整数组成的集合称为整数集,记作Z;全体有理数组成的集合称为有理数集,记作Q;全体实数组成的集合称为实数集,记作R;全体虚数组成的集合称为虚数集,记作I;全体实数和虚数组成的复数的集合称为复数集,记作C。
7、注意:+表示该数集中的元素都为正数,-表示该数集中的元素都为负数,*表示在剔除该数集的元素0(例如,R*表示剔除R中元素0后的数集。
8、即R*=R{0}=R-∪R+=(-∞,0)∪(0,+∞)。
9、)。
10、参考资料百度百科-整数集。